
Software Reliability Growth Models Incorporating Burr
Type III Test-Effort and Cost-reliability Analysis

N. Ahmad1, S. M. K. Quadri2, M.G.M. Khan3, and M. Kumar4

1University Department of Statistics and Computer Applications
T. M. Bhagalpur University, Bhagalpur-812007, India

2Department of Computer Science, University of Kashmir, Srinagar, India
3School of Computing, Information and Mathematical Sciences

The University of the South Pacific, Suva, Fiji Islands
4Department of Statistics, Mathematics, and Computer Applications, Rajendra Agriculture University,

Pusa, Samastipur, India

ABSTRACT

Software reliability growth model is one of the
fundamental techniques to assess software reliability
quantitatively. A number of testing-effort functions for
modeling software reliability based on the non-
homogeneous Poisson process (NHPP) have been proposed
in the past decades. Although these models are quite
helpful for the software testing, we still need to put more
testing-effort into software reliability modeling. This paper
develops a software reliability growth model based on the
non-homogeneous Poisson process which incorporates the
Burr Type III testing-effort. This scheme has a flexible
structure and may cover many of the earlier results on
software reliability growth modeling. Models parameters
are estimated by the maximum likelihood estimation and
the least square estimation methods, and software
reliability measures are investigated through numerical
experiments on actual data from three software projects.
Results are compared with other existing models which
reveal that the proposed software reliability growth model
has a fairly better prediction capability and it depicts the
real-life situation more faithfully. Also, these results can
provide a flexible tool on the decision making for software
engineers, software scientists, and software managers in the
development company. Furthermore, the optimal software
release policy for this model based on cost- reliability
criteria has been discussed.

Keywords: Software reliability, testing-effort function,
software testing, mean value function, non-homogeneous
Poisson process, estimation methods, optimal software
release policy.

1. Introduction
A computer system consists of two major components:
hardware and software. Although extensive research has
been done in the area of hardware reliability, research has
also been conducted to study the software reliability of
computer systems since 1970. Software reliability is the
probability that a given software will be functioning
without failure in a given environment during a specified
period of time. Hence, software reliability is a key factor in
software development process and software quality. The
testing phase is an important and expensive part during the

software development process which includes the
following four phases : specification, design, programming
and test-and-debug. Many resources are consumed by a
software development project. It is assumed that the
consumption rate of testing resource expenditures during
the testing phase is a constant or even do not consider such
testing effort. In reality software reliability models should
be developed by incorporating different testing-effort
functions. Yamada et al. (1986, 1993, 1990 and 1987) and
Musa et al. (1987) proposed a new and simple software
reliability growth model which describes the relationship
among the calendar testing, the amount of testing-effort,
and the number of software errors detected.
 Software reliability has been often studied in
terms of software reliability growth, based on observed
software error data during the software testing phase.
Software reliability growth models are concerned with the
relation between the cumulative number of errors detected
by software testing and the time span of the software
testing. Software reliability growth models can estimate the
expected initial error content of a software system, the
expected number of remaining errors at an arbitrary testing
time point, the software reliability, and so on. Several
software reliability growth models have been proposed and
investigated. For example, Goel & Okumoto (1979),
Jelinski & Moranda (1972), Littlewood (1980), Moranda
(1979), Musa (1980) and Yamada et al. (1984).
 In general appreciable testing resources are spent
on software testing in software development. The
consumption cure of testing resources over the testing
period can be thought of as a testing-effort curve. Testing-
effort is measured by: the number of executed test cases,
the amount of man-power, and the CPU time spent during
the testing phase, and so on. However existing software
reliability growth models do not consider such testing-
effort; that is, they assume that testing-effort is constant
over the testing period. We should consider the effect of
testing-effort on software reliability growth in order to
develop more realistic software reliability growth models.
Parameters are estimated by least square and maximum
likelihood estimation method.

2. Burr Type III testing-effort function
Since actual testing-effort data express various expenditure
patterns, sometimes the testing-effort expenditures are

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

555

difficult to be described by only a Exponential or Rayleigh
curve. Although the Weibull-type curve can fit the data
well under the general software development environment,
it will have an apparent peak phenomenon when the shape
parameter m>3. To over come with this difficulty consider
Burr type III test –effort function. The Burr type III testing-
effort function has the following form:
The cumulative testing-effort consumption in time (0, t] is

W(t)=    m
t

  1 0,0   4.1

and the current testing effort consumption curve is given as

w(t)=
    

  m
t

t

tm
m



















11

1
11

0,0,0,0   m 4.2
where , , m and  are constant parameters,  is the total
amount of test-effort expenditure,  is the scale parameter,
and m and  are shape parameters.
 The divergence between the Weibull-type curve
and W(t) is concentrated in the earlier stages of software
development where progress is often least visible and
formal accounting procedures for recording the amount of
testing effort applied may not have been instituted. It is
possible for us to judge between these models using some
statistical test of their relative ability to fit actual failure
data such as adjusting the origin and scales linearly Parr
(1980).
2.1 Least square estimation of parameter
 The parameters , , m and  in the Burr type III
testing-effort functions defined by (4.1) or (4.2) can be
estimated by least-squares method discussed by Draper &
Smith (1981). The estimators for , , m and  are
investigated for testing-effort wk spent at testing time tk (k
= 1, 2, ..., n). Then, based on the usual procedures, the

least-squares estimators ̂ , ̂ , m̂ and ̂ be obtained
by minimizing the following equation :

Minimize,   ,,, mS

   



n

k
kk tmW

1

2
1logloglog 

Differentiating the above equation with respect to m,,

and  we have the following non-linear equations:

   


 








 n

k
kk tmW

s

1

0
1

1logloglog2







   01logloglog
1 1

 






n

k
k

n

k
k tmnW 

      







n

k
k

n

k
k tmWn

1 1

1logloglog  4.3

   
 

 







 















 n

k
kk

k

kk tt
t

mtmW
s

1

1 0
1

1
1logloglog2 




 






     kk tmW 1logloglog .

 
0

1














 







 k

k

t

t

 4.4

      


 

 n

k
kkk ttmW

m

s

1

01log1logloglog2  

      


 
n

k
kkk ttmW

1

01log1logloglog  

4.5

       
 





 







 n

k k

kk
kk

t

ttm
tmW

s

1

0
1

log
1logloglog2 










     
  




 


 0

1

log
1logloglog 








k

kk
kk

t

tt
tmW

 4.6

These non-linear equations can be solve numerically to

estimate m̂,ˆ,ˆ  and ̂ .

3. Software reliability growth model
A number of SRGMs have been proposed on the subject of
software reliability. Among these models, Goel and
Okumoto(1979) used an NHPP as the stochastic process to
describe the fault process, Lyu (1996), Huang et al. (2002),
Berman et al. (1998) and Boehm (2000) modify the G-O
model and incorporate the concept of testing-effort in an
NHPP model to get a better description of the software
fault detection phenomenon. We also propose a new
SRGM with the Burr type III testing-effort function to
predict the behavior of failure occurrences and the fault
content of a software product. Based on our past
experimental results, this approach is suitable for
estimating the reliability of software application during the
development process.

3.1 Model Description
 Based on the assumptions given below, if the
number of detected errors due to the current testing-effort
expenditures is proportional to the number of remaining
errors using the Burr type III test effort function in (4.1),
we have the following differential equation :

       10,0, 



ratmartw

t

tm 4.7

where, a is the initial error content in the system & r is the
error detection. The solution of differential equation (4.7)
gives.

    trWeatm  1 4.8
Substituting (4.1) for W(t) in (4.8), the equation (4.8) can
be explicitly rewritten as :

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

556

     




 


m

treatm
 11 4.9

From equation (4.8), we have the following important
relationship between m(t) & W(t)

   









tma

a

r
tW log

1
 4.10

For stochastic modeling of a software-error detection
phenomenon, defining the mean value of N(t) based on an
NHPP by m(t) in (4.8) yields a software-reliability growth
model incorporating the Burr type III test-effort function
under the assumptions of Goel and Okumoto (1979) and
Yamada (1991) by an NHPP as :

       
!

Pr
n

etm
ntN

tmn 
 ,2,1,0n

 =   tmnPoim ; 4.11
where m(t) is called mean value function of the NHPP
Yamada et al. (1985, 1993) and Poim (n; m (t)) is a Poisson
pmf with parameter m(t). The intensity function of the
NHPP is given by :

       trWetwr
t

tm
t 




  4.12

which means the instantaneous error detection rate. From
equation (4.11), we can show that the limit distribution of
N(t) is a Poisson distribution with the following mean :

   ream  1 4.13
The equation (4.13) implies that even if a software system
is tested during an infinitely long duration, all errors
remaining in the system can not be detection Yamada et al.
(1986, 1993). Thus the mean number of undetected errors
d(t) is a test is applied for an infinite amount of time is :

   
  



r

r

aetd

eaama






 1

Assumptions

1. The error removal process follows the Non
Homogeneous Poisson Process (NHPP).
2. The software system is subject to failures at
random times caused by errors remaining in the system.
3. The mean number of errors detected in the time

interval (t,]tt  by the current test-effort is proportional
to the mean number of remaining errors in the system.
4. The proportionality is a constant over time.
5. The consumption curve of testing-effort function
is described by Burr Type III.
6. Each time a failure occurs, the error which caused
it is immediately removed, and no new errors are
introduced.

3.2 Software reliability measures
Let N(t) represent the number of errors remaining in the
system of testing time t. Based on the NHPP model with
m(t), given by in equation (4.8), two quantitative measures
for software reliability assessment can be derived Goel &
Okumoto (1979) and Yamada (1991). The expectation of

 tN and its variance are given by :

         tNNEtNEtr 

      tNENE 

           rWtrW eeatmm

   ,tNVar 4.14
The software reliability representing the probability that a
software failure does not occur in the time interval (t, t + x)
is given by :

         tmxtmetxRR
    xtrWtrW eeae

 
 4.15
The instantaneous mean time between failures (MTBF) at
arbitrary testing can be defined as a reciprocal of error
detection rate in equation (4.12) Yamada (1985). Then the
instantaneous MTBF is given by :

       trWtwrt
tMTBF 




..

11



  
        m

t

m

t
tmr

t
m










 













.1
.....

.11
1

.11

 4.16

4. Maximum likelihood estimations
 The reliability growth parameters a and r in the
NHPP model with m(t) in (4.7) can be estimated by the
method of maximum-likelihood estimation. Let the

estimated parameters m̂,ˆ,ˆ  and ̂ in the Burr type III
test-effort function in (4.1) have been obtained by the

method of least-squares estimation. The ̂ and r̂ are

determined for the n observed data pairs
 kk yt ,

 .,,2,1 nk  Then, the joint pmf, the log-likelihood
function, for the unknown parameters a and r in the NHPP
model with m(t) in (4.7), is given by :

          kkkk

n

k
kk

n

k

trWtrWyyayyL  





 expexplnlnln 11
1

1
1

      



n

k
kkn yytrWa

1
1 ,!lnexp1 4.17

 t0  0 and y0  0.

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

557

The usual calculus methods for an interior maximum result
in

,nn fay  4.18

   
  ,

1

11

1 



 


 
kk

kkkk
n

k
n ff

ggyy
ga 4.19

  
      .,,2,1,exp

,exp

nktWrtWg

tWrlf

kkk

kk


 4.20

which can be solved numerically to estimate â and r̂ .
If the sample size n of the observed data is sufficient large,

the maximum-likelihood estimates ̂ and r̂
asymptotically follow a bivariate s-normal distribution.

 ,~
ˆ

ˆ


























n

r

a
BVN

r

a
 4.21

The  in the asymptotic properties of (4.21) is useful in
quantifying the variability of the estimated parameters
â and r̂ Nelson (1982), and is the inverse of F



































































2

22

2

2

2

lnln

lnln

r

L
E

ra

L
E

ra

L
E

a

L
E

F

 =  

 

,

1

1

2
1
































kk

n

k
kk

n

n
n

ff

gga
g

g
a

f

 4.22

where,

    ktrW
k etWg  4.23

and

  ktrW
k ef  1

Substitutory the value of a and r in (4.23) and calculate F-1.
The estimated asymptotic variance-covariance matrix is :

   

    












 

rVarraCov

raCovaVar
F

ˆˆ,ˆ

ˆ,ˆˆ
ˆ 1

5. Real Software Comparison Criteria and
Data Analysis

5.1 Comparison criterion
 To check the performance of our software
reliability growth model and to make their comparison with
the other existing SRGM, we use two types of comparison
criteria :

(1) The Accuracy of Estimation Musa et al. (1987),
Hou et al. (1994), Goel et al. (1979) and Kuo et al. (2001).

  
a

a

M

mM 
 4.24

where Ma is the actual cumulative number of detected
errors during the test and after the test, and m is the
estimated parameter :

(2) The Mean of Square fitting Errors

 
  

k

mtm
MSE

k

i
kk




 1

2

 4.25

The lower MSE indicates less fitting errors and better
performance Kapur & Garg (1996).

5.2 Actual Data Analysis
The set of real data in Table 4.1 is given. In this chapter is
the System T1 data of the Rome Air Development Center
(RADC) projects and cited from Musa et al. (1987). The
number of object instructions for the system T1 which is
used for a real-time command and control application. In
this case, the size of the software is approximately 21,700
object instructions. The software were tested for 21 weeks
with 9 programmers. During the test phase, about 25.3
CPU Hours were used and 136 faults were detected.

In order to estimate the parameters , , m and  of the
Burr Type III distributed function; we fit the actual testing-
effort data into equations (4.1) and (4.2) and solve it by
using the method of least squares. That is, we will
minimize the sum of squares given in equation (4.3).
Hence, we can find the estimates only through numerical
procedures. The estimated values of parameters of the Burr
Type III testing-effort function are:
̂ =27.54330 ̂ = 0.0528876,
 4.26

m̂ =0.405062, and ̂ = 13.56046

The estimated Burr Type III test-effort functions are

    140506.056046.1305288.01156046.1305288.0560.13

40506.005288.05433.27)(ˆ



tt

tw
 4.27

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

558

   405062.056046.13052887.0154330.27)(ˆ tW 4.28

Figure 4.1 and Figure 4.2 shows the fitting of the estimated
testing-effort by using Equation (4.27) and (4.28). Here, the
fitted curves are shown as a doted line and solid line is

actual software data. Using the estimated parameters , ,
m, and , the other parameters ra, in (4.8) can be solved
by MLE method.
For these estimates, the optimality was checked
numerically.
These estimated parameters are

153455.0

14062.134




r

a

Table 4.2 summarizes the experimental results of estimated
parameters with their standard errors and 95 % confidence
bound. The estimated mean value function is

   




 

  405062.0
05288.015433.2715345.0 56046.13

114061.134)(ˆ tetm

4.29 Where

   405062.05604.13052887.0154330.27)(ˆ tW

Table 4.3 and 4.4 shows regression analysis depends on
test – effort and number of failure respectively. Similarly,
we plotted a fitted curve of the estimated mean value
function with the actual software data in Figure 4.3.
Intensity function also given in Figure 4.4 fitted well in this
experiment. Also a comparison Table of the estimates of
our model along with other models with initial faults a
and MSE is given in Table 4.5. From Figures (4.1), (4.2),
(4.3) and (4.4) and the comparison criteria in Table 4.5
shows that our SRGM is better fit than the other models for
debugging data. Kolmogorov Smirnov goodness-of-fit test
shows that our proposed SRGM described by an NHPP

with)(ˆ tm in (4.29) fits pretty well at the 5 % level of
significance.).

Table 4.1. Software Failure Data (System T1).

Time of

observation

(in week)

Current
execution time

(in CPU hr)

Cumulative
execution

time

Number
of failure

Cumulative

no. of

failure.

1 0.00917 0.00917 2 2

2 0.01000 0.01917 0 2

3 0.00300 0.02217 0 2

4 0.02300 0.04517 1 3

5 0.04100 0.08617 1 4

6 0.00400 0.09017 2 6

7 0.02500 0.11517 1 7

8 0.30200 0.41717 9 16

Time of

observation

(in week)

Current
execution time

(in CPU hr)

Cumulative
execution

time

Number
of failure

Cumulative

no. of

failure.

9 0.97300 1.39017 13 29

10 0.02000 1.41017 2 31

11 0.45000 1.86017 11 42

12 0.25000 2.11017 2 44

13 0.94000 3.05017 11 55

14 1.34000 4.39017 14 69

15 3.32000 7.71017 18 87

16 3.56000 11.27017 12 99

17 2.66000 13.93017 12 111

18 3.77000 17.70017 15 126

19 3.40000 21.10017 6 132

20 2.40000 23.50017 3 135

21 1.80000 25.30017 1 136

Table 4.2 Experimental Result of different
parameters

Parameters Estimate
Standard

Error

95 % confidence
Interval

Lower Upper

Α 27.54330 1.670201 24.01948 31.067121

β 0.05288 .000088 0.0510222 0.054753

m 0.0405062 3.75230 5.642788 21.47713

 13.56046 0.138939 0.01119295 0.698199

a 134.140612 5.46235 122.70776 145.57346

r 0.153455 0.01866 0.144393 .19251

Table 4.3 Regression analysis depends on test-
effort

Source
Degree of
Freedom

Sum of
squares

Mean
Squares

Regression 4 2369.05331 592.26333

Residual 17 2.94673 0.17334

Un corrected
Total

21 2372.0004 -

(Corrected
Total)

20 1447.35951 -

R2 = 1-Residual SS/Corrected SS = 0.99803

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

559

Table 4.4 Regression Analysis depends on
Number of failures

Source
Degree

of
Freedom

Sum of
squares

Mean
Squares

Regression 2 112046.03571 56023.0178

Residual 19 1331.96429 70.10338

Un corrected
Total

21 213378.000 -

(Corrected
Total)

20 51709.23810 -

R2 = 1-Residual SS/Corrected SS = 0.97424

Table 4.5. Comparison results

Model a r MSE

Equation (4.9) of Burr
Type III Model

134.140612 0.153455 63.427

G-O Model (Ohba(1984))
check

142.32 0.1246 2438.3

Exponential Model (Musa
et. al (1987))

137.2 0.156 3019.66

Equation (4.8) with
Rayleigh Function

866.94 0.00962 89.2409

Delayed s-shaped Model
(Huang & Kuo (1997))

237.196 0.0963446 245.246

Figure 4.1. Observed/estimated Current Testing-Effort Function VS. Time

Time (Weeks)

21191715131197531

T
e

st
in

g
-E

ff
o

rt
 (

C
P

U
 H

o
u

rs
)

4

3

2

1

0

Actual

Estimated

Figure 4.2. Observed/estimated Cumulative Test-Effort Function VS. Time

Time (Weeks)

21191715131197531

C
u

m
u

la
tiv

e
 T

e
st

in
g

-E
ff

o
rt

 (
C

P
U

 H
o

u
rs

)

30

20

10

0

Observed

Estimated

Figure 4.3. Observed/Estimated Cumulative Number of Failures VS. Time

Time (Weeks)

21191715131197531

C
u

m
u

la
tiv

e
 N

u
m

b
e

r
o

f
F

a
ilu

re
s

160

140

120

100

80

60

40

20

0

Observed

Estimated

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19 21

Time (weeks)

In
te

n
si

ty
 F

un
ct

io
n

Figure 4.4. Graph of Estimated Intensity Function.

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

560

4.7. Conclusion
In this chapter, test effort function representing the time
dependent behavior of test effort spent during software
testing phase have been described by Burr Type-III curve.
Due to incorporating the Burr Type – III testing effort
function the proposed software reliability growth model fits
the real software data set fairly well and in could give us
reasonable description of resource consumption behavior.
Comparison study shows that Burr Type – III model gives
minimum error percentage rather than, G-O, Exponential
Rayleigh and Delayed S-shaped model. From figure we
also conclude that our model fit the better as compare to
other models.

References
[1] Ahmad, N., Bokhari, M.U., Quadri, S.M.K. and Khan,
M.G.M. (2008), “The exponetiated Weibull software reliability
growth model with various testing-efforts and optimal release
policy: a performance analysis”, International Journal of Quality
and Reliability Management, Vol. 25 (2), pp. 211-235.
[2] Ahmad, N., Quadri, S. M. K. and Choudhary, N. (2006),
“Design of Accelerated life Tests for Periodic Inspection with
Burr Type III Distributions: Models, Assumptions, and
Applications,” Journal of Applied Statistical Science, Vol. 15 (2),
161 – 179.
[3] Ahmad, N., Quadri, S. M. K. and Choudhary, N. (2008),
“Design of Accelerated life Tests for Periodic Inspection with
Burr Type III Distributions: Models, Assumptions, and
Applications,” Trends in Applied Statistics Research (ISBN 978-
1-60456-153-1), Editor: M. Ahsanullah, Nova Science Publishers,
Inc, USA, pp. 27– 46.
[4] Al-Dayian G. R. (1999), “Burr type III distribution:
Properties and Estimation”, The Egyptian Statistical Journal, 43,
pp. 102-116.
[5] Bokhari, M.U. and Ahmad, N. (2006), “Analysis of a
software reliability growth models: the case of log-logistic test-
effort function”, In: Proceedings of the 17th IASTED
International Conference on Modelling and Simulation
(MS’2006), Montreal, Canada, pp. 540-545.
[6] Bokhari, M.U. and Ahmad, N. (2007), “Software
reliability growth modeling for exponentiated Weibull functions
with actual software failures data”, Advances in Computer
Science and Engineering: Reports and Monographs, Vol. 2,
World Scientific Publishing Company.
[7] Burr, I.W. (1942), “Cumulative frequency distribution”,
Annals of Mathematical Statistics, Vol. 13, pp. 215-231.
[8] Domma, F. (2010), “Some properties of the bivariate Burr
type III distribution”, Statistics: A Journal of Theoretical and
Applied Statistics, Vol. 44, no. 2, pp. 203-215.
[9] Goel, A.L. and Okumoto, K. (1979), “Time dependent
error-detection rate model for software reliability and other
performance measures”, IEEE Transactions on Reliability, Vol.
R- 28, No. 3, pp. 206-211.
[10] Huang, C.Y. (2005), “Performance analysis of software
reliability growth models with testing-effort and change-point”,
Journal of Systems and Software, Vol. 76, pp. 181-194.
[11] Huang, C.Y. and Kuo, S.Y. (2002), “ Analysis of
incorporating logistic testing-effort function into software
reliability modeling”, IEEE Transactions on Reliability, Vol. 51,
no. 3, pp. 261-270.
[12] Huang, C.Y., Kuo, S.Y. and Chen, I.Y. (1997), “Analysis
of software reliability growth model with logistic testing-effort
function”, In: Proceeding of 8th International Symposium on
Software Reliability Engineering (ISSRE’1997), Albuquerque,
New Maxico, pp. 378-388.

[13] Huang, C.Y., Kuo, S.Y. and Lyu, M.R. (1999), “Optimal
software release policy based on cost, reliability and testing
efficiency”, In: Proceedings of the 23rd IEEE Annual
International Computer Software and Applications Conference
(COMPSAC’99), Phoenix, Arizona, pp. 468-473.
[14] Huang, C.Y., Kuo, S.Y. and Lyu, M.R. (2000), “Effort-
index based software reliability growth models and performance
assessment”, In: Proceedings of the 24th IEEE Annual
International Computer Software and Applications Conference
(COMPSAC’2000), pp. 454-459.
[15] Huang, C.Y., Kuo, S.Y. and Lyu, M.R. (2007), “An
assessment of testing-effort dependent software reliability growth
models”, IEEE Transactions on Reliability, Vol. 56, no.2, pp 198-
211.
[16] Kapur, P.K. and Garg, R.B. (1989), “Cost reliability
optimum release policies for a software system under penalty
cost”, International Journal of System Science, Vol. 20, pp. 2547-
2562.
[17] Kapur, P.K. and Garg, R.B. (1990), “Cost reliability
optimum release policies for a software system with testing
effort”, Operations Research, Vol. 27, no. 2, pp. 109-116.
[18] Kapur, P.K. and Younes, R.B. (1996) “Modeling an
imperfect debugging phenomenon in software reliability”,
Microelectronics and Reliability, Vol. 36, pp. 645-650.
[19] Kapur, P.K., Garg, R.B. and Kumar, S. (1999),
Contributions to Hardware and Software Reliability, World
Scientific, Singapore.
[20] Kapur, P.K., Goswami, D.N. and Gupta, A. (2004) “A
software reliability growth model with testing effort dependent
learning function for distributed systems”, International Journal of
Reliability, Quality and Safety Engineering, Vol. 11, no. 4, pp.
365-377.
[21] Kapur, P.K., Grover, P.S., and Younes, S. (1994),
“Modeling an imperfect debugging phenomenon with testing
effort”, In: Proceedings of 5th International Symposium on
Software Reliability Engineering (ISSRE’1994), pp. 178-183.
[22] Kumar, M., Ahmad, N. and Quadri, S.M.K. (2005),
“Software reliability growth models and data analysis with a
Pareto test-effort”, RAU Journal of Research, Vol., 15 (1-2), pp.
124-128.
[23] Kuo, S.Y., Hung, C.Y. and Lyu, M.R. (2001),
“Framework for modeling software reliability, using various
testing-efforts and fault detection rates”, IEEE Transactions on
Reliability, Vol. 50, no.3, pp 310-320.
[24] Lyu, M.R. (1996), Handbook of Software Reliability
Engineering, McGraw- Hill.
[25] Mokhlish, N. A. (2005) “Reliability of a Stress-Strength
Model with Burr Type III Distributions, ”Communications in
Statistics: Theory and Methods, 34(7), 1643–1657.
[26] Musa J.D. (1999), Software Reliability Engineering: More
Reliable Software, Faster Development and Testing, McGraw-
Hill.
[27] Musa, J.D., Iannino, A. and Okumoto, K. (1987), Software
Reliability: Measurement, Prediction and Application, McGraw-
Hill.
[28] Nelson, W. (1982), Applied Life Data Analysis, Wiley,
New York.
[29] Ohba, M. (1984), “Software reliability analysis model”
IBM Journal. Research Development, Vol. 28, no. 4, pp. 428-443.
[30] Okumoto, K. and Goel, A.L. (1980), “Optimum release
time for software system based on reliability and cost criteria,”
Journal of Systems and Software, Vol.1, pp. 315-318.
[31] Pham, H. (2000), Software Reliability, Springer-Verlag,
New York.
[32] Putnam, L. (1978), “A general empirical solution to the
macro software sizing and estimating problem”, IEEE
Transactions on Software Engineering, Vol. 4, pp. 485-497.

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

561

[33] Pillai, K. and Nair, V.S.S. (1997), “A model for software
development effort and cost estimation”, IEEE Transactions on
Software Engineering, Vol. 4, no. 8, pp. 343-361.
[34] Quadri, S.M.K., Ahmad, N., Peer, M.A. and Kumar, M.
(2006), “Nonhomogeneous Poisson process software reliability
growth model with generalized exponential testing effort
function”, RAU Journal of Research, Vol., 16 (1-2), pp. 159-163.
[35] Shao Q., Chen Y. D. and Zhang L. (2008), “An extension
of three-parameter Burr III distribution for low-flow frequency
analysis”, Computational Statistics & Data Analysis, 52, pp.
1304-1314.
[36] Tohma, Y., Jacoby, R., Murata, Y. and Yamamoto, M.
(1989), “Hyper-geometric distribution model to estimate the
number of residual software fault”, In: Proceeding of COMPSAC-
89, Orlando, pp. 610-617.
[37] Xie, M. (1991), Software Reliability Modeling, World
Scientific Publication, Singapore.
[38] Yamada, S., Hishitani J. and Osaki, S. (1991), “Test-effort
dependent software reliability measurement”, International
Journal of Systems Science, Vol. 22, no. 1, pp. 73-83.
[39] Yamada, S., Hishitani J. and Osaki, S. (1993), “Software
reliability growth model with Weibull testing-effort: a model and
application”, IEEE Transactions on Reliability, Vol. R-42, pp.
100-105.
[40] Yamada, S., Narihisa, H. and Osaki, S. (1984), “Optimum
release policies for a software system with a scheduled software
delivery time”, International Journal of System Science, Vol.15,
pp. 905-914.
[41] Yamada, S. and Ohtera, H. (1990), “Software reliability
growth models for testing effort control”, European Journal of
Operational Research, Vol. 46, no. 3, pp. 343-349.
[42] Yamada, S., Ohtera, H. and Norihisa, H. (1986),
“Software reliability growth model with testing-effort”, IEEE
Transactions on Reliability, Vol. R-35, no. 1, pp.19-23.
[43] Yamada, S., Ohtera, H. and Narihisa, H. (1987), “A
testing-effort dependent software reliability model and its
application”, Microelectronics and Reliability, Vol. 27, no. 3, pp.
507-522.
[44] Yamada, S., and Osaki, S. (1985a), “Software reliability
growth modeling: models and applications”, IEEE Transaction on
Software Engineering, Vol. SE-11, no. 12, pp. 1431-1437.

[45] Yamada, S. and Osaki, S. (1985b), “Cost-reliability
optimal release policies for software systems”, IEEE Transaction
on Reliability, Vol. R-34, no. 5, pp. 422-424.

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

562

