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ABSTRACT 

Software reliability growth model is one of the 
fundamental techniques to assess software reliability 
quantitatively. A number of testing-effort functions for 
modeling software reliability based on the non-
homogeneous Poisson process (NHPP) have been proposed 
in the past decades. Although these models are quite 
helpful for the software testing, we still need to put more 
testing-effort into software reliability modeling. This paper 
develops a software reliability growth model based on the 
non-homogeneous Poisson process which incorporates the 
Burr Type III testing-effort. This scheme has a flexible 
structure and may cover many of the earlier results on 
software reliability growth modeling. Models parameters 
are estimated by the maximum likelihood estimation and 
the least square estimation methods, and software 
reliability measures are investigated through numerical 
experiments on actual data from three software projects. 
Results are compared with other existing models which 
reveal that the proposed software reliability growth model 
has a fairly better prediction capability and it depicts the 
real-life situation more faithfully. Also, these results can 
provide a flexible tool on the decision making for software 
engineers, software scientists, and software managers in the 
development company. Furthermore, the optimal software 
release policy for this model based on cost- reliability 
criteria has been discussed. 
 
Keywords: Software reliability, testing-effort function, 
software testing, mean value function, non-homogeneous 
Poisson process, estimation methods, optimal software 
release policy. 
 
1. Introduction 
A computer system consists of two major components: 
hardware and software. Although extensive research has 
been done in the area of hardware reliability, research has 
also been conducted to study the software reliability of 
computer systems since 1970. Software reliability is the 
probability that a given software will be functioning  
without failure in a given environment during a specified 
period of time. Hence, software reliability is a key factor in 
software development process and software quality. The 
testing phase is an important and expensive part during the 

software development process which includes the 
following four phases : specification, design, programming 
and test-and-debug. Many resources are consumed by a 
software development project. It is assumed that the 
consumption rate of testing resource expenditures during 
the testing phase is a constant or even do not consider such 
testing effort. In reality software reliability models should 
be developed by incorporating different testing-effort 
functions. Yamada et al. (1986, 1993, 1990 and 1987) and 
Musa et al. (1987) proposed a new and simple software 
reliability growth model which describes the relationship 
among the calendar testing, the amount of testing-effort, 
and the number of software errors detected. 
 Software reliability has been often studied in 
terms of software reliability growth, based on observed 
software error data during the software testing phase. 
Software reliability growth models are concerned with the 
relation between the cumulative number of errors detected 
by software testing and the time span of the software 
testing. Software reliability growth models can estimate the 
expected initial error content of a software system, the 
expected number of remaining errors at an arbitrary testing 
time point, the software reliability, and so on. Several 
software reliability growth models have been proposed and 
investigated. For example, Goel & Okumoto (1979), 
Jelinski & Moranda (1972), Littlewood (1980), Moranda 
(1979), Musa (1980) and Yamada et al. (1984). 
 In general appreciable testing resources are spent 
on software testing in software development. The 
consumption cure of testing resources over the testing 
period can be thought of as a testing-effort curve. Testing-
effort is measured by: the number of executed test cases, 
the amount of man-power, and the CPU time spent during 
the testing phase, and so on. However existing software 
reliability growth models do not consider such testing-
effort; that is, they assume that testing-effort is constant 
over the testing period. We should consider the effect of 
testing-effort on software reliability growth in order to 
develop more realistic software reliability growth models. 
Parameters are estimated by least square and maximum 
likelihood estimation method. 
 
2. Burr Type III testing-effort function 
Since actual testing-effort data express various expenditure 
patterns, sometimes the testing-effort expenditures are 
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difficult to be described by only a Exponential or Rayleigh 
curve. Although the Weibull-type curve can fit the data 
well under the general software development environment, 
it will have an apparent peak phenomenon when the shape 
parameter m>3. To over come with this difficulty consider 
Burr type III test –effort function. The Burr type III testing-
effort function has the following form:  
The cumulative testing-effort consumption in time (0, t] is  

W(t)=    m
t

  1 0,0              4.1 

and the current testing effort consumption curve is given as 
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where , , m and  are constant parameters,  is the total 
amount of test-effort expenditure,  is the scale parameter, 
and m and  are shape parameters. 
 The divergence between the Weibull-type curve 
and W(t) is concentrated in the earlier stages of software 
development where progress is often least visible and 
formal accounting procedures for recording the amount of 
testing effort applied may not have been instituted. It is 
possible for us to judge between these models using some 
statistical test of their relative ability to fit actual failure 
data such as adjusting the origin and scales linearly Parr 
(1980). 
2.1 Least square estimation of parameter 
 The parameters , , m  and  in the Burr type III 
testing-effort functions defined by (4.1) or (4.2) can be 
estimated by least-squares method discussed by Draper & 
Smith (1981). The estimators for , , m  and  are 
investigated for testing-effort wk spent at testing time tk (k 
= 1, 2, ..., n). Then, based on the usual procedures, the 

least-squares estimators ̂ , ̂ , m̂  and ̂  be obtained 
by minimizing the following equation : 
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These non-linear equations can be solve numerically to 

estimate m̂,ˆ,ˆ   and ̂ .   
 
3. Software reliability growth model 
A number of SRGMs have been proposed on the subject of 
software reliability. Among these models, Goel and 
Okumoto(1979) used an NHPP as the stochastic process to 
describe the fault process, Lyu (1996), Huang et al. (2002), 
Berman et al. (1998) and Boehm (2000) modify the G-O 
model and incorporate the concept of testing-effort in an 
NHPP model to get a better description of the software 
fault detection phenomenon. We also propose a new 
SRGM with the Burr type III testing-effort function to 
predict the behavior of failure occurrences and the fault 
content of a software product. Based on our past 
experimental results, this approach is suitable for 
estimating the reliability of software application during the 
development process. 

3.1 Model Description 
 Based on the assumptions given below, if the 
number of detected errors due to the current testing-effort 
expenditures is proportional to the number of remaining 
errors using the Burr type III test effort function in (4.1), 
we have the following differential equation : 

       10,0, 



ratmartw

t

tm   4.7 

where, a is the initial error content in the system & r is the 
error detection. The solution of differential equation (4.7) 
gives. 

    trWeatm  1    4.8 
Substituting (4.1) for W(t) in (4.8), the equation (4.8) can 
be explicitly rewritten as : 
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From equation (4.8), we have the following important 
relationship between m(t) & W(t) 
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For stochastic modeling of a software-error detection 
phenomenon, defining the mean value of N(t) based on an 
NHPP by m(t) in (4.8) yields a software-reliability growth 
model incorporating the Burr type III test-effort function 
under the assumptions of Goel and Okumoto (1979) and 
Yamada (1991) by an NHPP as : 
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where m(t) is called mean value function of the NHPP 
Yamada et al. (1985, 1993) and Poim (n; m (t)) is a Poisson 
pmf with parameter m(t).  The intensity function of the 
NHPP is given by : 
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which means the instantaneous error detection rate.  From 
equation (4.11), we can show that the limit distribution of 
N(t) is a Poisson distribution with the following mean : 

   ream  1    4.13 
The equation (4.13) implies that even if a software system 
is tested during an infinitely long duration, all errors 
remaining in the system can not be detection Yamada et al. 
(1986, 1993).  Thus the mean number of undetected errors 
d(t) is a test is applied for an infinite amount of time is : 
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Assumptions  

1. The error removal process follows the Non 
Homogeneous Poisson Process (NHPP). 
2. The software system is subject to failures at 
random times caused by errors remaining in the system. 
3. The mean number of errors detected in the time 

interval (t, ]tt  by the current test-effort is proportional 
to the mean number of remaining errors in the system. 
4. The proportionality is a constant over time. 
5. The consumption curve of testing-effort function 
is described by Burr Type III. 
6. Each time a failure occurs, the error which caused 
it is immediately removed, and no new errors are 
introduced. 
 

3.2 Software reliability measures 
Let N(t) represent the number of errors remaining in the 
system of testing time t.  Based on the NHPP model with 
m(t), given by in equation (4.8), two quantitative measures 
for software reliability assessment can be derived Goel & 
Okumoto (1979) and Yamada (1991). The expectation of 

 tN  and its variance are given by : 
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The software reliability representing the probability that a 
software failure does not occur in the time interval (t, t + x) 
is given by : 
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The instantaneous mean time between failures (MTBF) at 
arbitrary testing can be defined as a reciprocal of error 
detection rate in equation (4.12) Yamada (1985).  Then the 
instantaneous MTBF is given by : 
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4. Maximum likelihood estimations 
 The reliability growth parameters a and r in the 
NHPP model with m(t) in (4.7) can be estimated by the 
method of maximum-likelihood estimation. Let the 

estimated parameters m̂,ˆ,ˆ  and ̂  in the Burr type III 
test-effort function in (4.1) have been obtained by the 

method of least-squares estimation. The ̂  and r̂  are 

determined for the n observed data pairs 
 kk yt ,

 

 .,,2,1 nk   Then, the joint pmf, the log-likelihood 
function, for the unknown parameters a and r in the NHPP 
model with m(t) in (4.7), is given by : 
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 t0  0 and y0  0. 
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The usual calculus methods for an interior maximum result 
in 
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which can be solved numerically to estimate â and r̂ . 
If the sample size n of the observed data is sufficient large, 

the maximum-likelihood estimates ̂  and r̂  
asymptotically follow a bivariate s-normal distribution. 

 ,~
ˆ

ˆ


























n

r

a
BVN

r

a
 4.21 

The  in the asymptotic properties of (4.21) is useful in 
quantifying the variability of the estimated parameters 
â and r̂  Nelson (1982), and is the inverse of F 
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where,   

    ktrW
k etWg    4.23 

and 

  ktrW
k ef  1    

     
Substitutory the value of a and r in (4.23) and calculate F-1. 
The estimated asymptotic variance-covariance matrix is : 
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5. Real Software Comparison Criteria and 
Data Analysis 

5.1 Comparison criterion 
 To check the performance of our software 
reliability growth model and to make their comparison with 
the other existing SRGM, we use two types of comparison 
criteria :  

(1) The Accuracy of Estimation Musa et al. (1987), 
Hou et al. (1994), Goel et al. (1979) and Kuo et al. (2001). 

  
a

a

M

mM 
   4.24 

where Ma is the actual cumulative number of detected 
errors during the test and after the test, and m is the 
estimated parameter : 

(2) The Mean of Square fitting Errors  
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The lower MSE indicates less fitting errors and better 
performance Kapur & Garg (1996). 

5.2 Actual Data Analysis 
The set of real data in Table 4.1 is given. In this chapter is 
the System T1 data of the Rome Air Development Center 
(RADC) projects and cited from Musa et al. (1987). The 
number of object instructions for the system T1 which is 
used for a real-time command and control application. In 
this case, the size of the software is approximately 21,700 
object instructions. The software were tested for 21 weeks 
with 9 programmers. During the test phase, about 25.3 
CPU Hours were used and 136 faults were detected.  

In order to estimate the parameters , , m and   of the 
Burr Type III distributed function; we fit the actual testing-
effort data into equations (4.1) and (4.2) and solve it by 
using the method of least squares. That is, we will 
minimize the sum of squares given in equation (4.3). 
Hence, we can find the estimates only through numerical 
procedures. The estimated values of parameters of the Burr 
Type III testing-effort function are: 
̂  =27.54330 ̂  = 0.0528876,  
   4.26 

m̂  =0.405062, and ̂  = 13.56046  
                                   
The estimated Burr Type III test-effort functions are  
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Figure 4.1 and Figure 4.2 shows the fitting of the estimated 
testing-effort by using Equation (4.27) and (4.28). Here, the 
fitted curves are shown as a doted line and solid line is 

actual software data. Using the estimated parameters , , 
m, and , the other parameters ra,  in (4.8) can be solved 
by MLE method. 
For these estimates, the optimality was checked 
numerically.  
These estimated parameters are  
 

153455.0

14062.134




r

a
 

Table 4.2 summarizes the experimental results of estimated 
parameters with their standard errors and 95 % confidence 
bound. The estimated mean value function is  
    

   




 

  405062.0
05288.015433.2715345.0 56046.13

114061.134)(ˆ tetm

                                                                     
4.29  Where 

   405062.05604.13052887.0154330.27)(ˆ tW                      
              
Table 4.3 and 4.4 shows regression analysis depends on 
test – effort and number of failure respectively. Similarly, 
we plotted a fitted curve of the estimated mean value 
function with the actual software data in Figure 4.3. 
Intensity function also given in Figure 4.4 fitted well in this 
experiment. Also a comparison Table of the estimates of 
our model along with other models with initial faults a  
and MSE is given in Table 4.5. From Figures (4.1), (4.2), 
(4.3) and (4.4) and the comparison criteria in Table 4.5 
shows that our SRGM is better fit than the other models for 
debugging data. Kolmogorov Smirnov goodness-of-fit test 
shows that our proposed SRGM described by an NHPP 

with )(ˆ tm in (4.29) fits pretty well at the 5 % level of 
significance.).  
 
Table 4.1. Software Failure Data ( System T1). 

Time of 

observation 

(in week) 

Current 
execution time 

(in CPU hr) 

Cumulative 
execution 

time 

Number 
of failure 

Cumulative  

no. of  

failure. 

1 0.00917 0.00917 2 2 

2 0.01000 0.01917 0 2 

3 0.00300 0.02217 0 2 

4 0.02300 0.04517 1 3 

5 0.04100 0.08617 1 4 

6 0.00400 0.09017 2 6 

7 0.02500 0.11517 1 7 

8 0.30200 0.41717 9 16 

Time of 

observation 

(in week) 

Current 
execution time 

(in CPU hr) 

Cumulative 
execution 

time 

Number 
of failure 

Cumulative  

no. of  

failure. 

9 0.97300 1.39017 13 29 

10 0.02000 1.41017 2 31 

11 0.45000 1.86017 11 42 

12 0.25000 2.11017 2 44 

13 0.94000 3.05017 11 55 

14 1.34000 4.39017 14 69 

15 3.32000 7.71017 18 87 

16 3.56000 11.27017 12 99 

17 2.66000 13.93017 12 111 

18 3.77000 17.70017 15 126 

19 3.40000 21.10017 6 132 

20 2.40000 23.50017 3 135 

21 1.80000 25.30017 1 136 

 

Table 4.2 Experimental Result of different 
parameters                                                                        

Parameters Estimate 
Standard 

Error 

95 % confidence 
Interval 

Lower Upper 

Α 27.54330 1.670201 24.01948 31.067121 

β 0.05288 .000088 0.0510222 0.054753 

m  0.0405062 3.75230 5.642788 21.47713 

  13.56046 0.138939 0.01119295 0.698199 

a 134.140612 5.46235 122.70776 145.57346 

r 0.153455 0.01866 0.144393 .19251 

 

Table 4.3 Regression analysis depends on test-
effort 

Source 
Degree of 
Freedom 

Sum of 
squares 

Mean 
Squares 

Regression 4 2369.05331 592.26333 

Residual 17 2.94673 0.17334 

Un corrected 
Total 

21 2372.0004 - 

(Corrected 
Total) 

20 1447.35951 - 

R2 = 1-Residual SS/Corrected SS = 0.99803  
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Table 4.4 Regression Analysis depends on 
Number of failures 

Source 
Degree 

of 
Freedom 

Sum of 
squares 

Mean 
Squares 

Regression 2 112046.03571 56023.0178 

Residual 19 1331.96429 70.10338 

Un corrected 
Total 

21 213378.000 - 

(Corrected 
Total) 

20 51709.23810 - 

 

R2 = 1-Residual SS/Corrected SS = 0.97424 
 
 
Table 4.5. Comparison results  

Model a r MSE 

Equation (4.9)   of Burr 
Type III Model 

134.140612 0.153455 63.427 

G-O Model (Ohba(1984)) 
check 

142.32 0.1246 2438.3 

Exponential Model (Musa 
et. al (1987)) 

137.2 0.156 3019.66 

Equation (4.8)  with 
Rayleigh Function 

866.94 0.00962 89.2409 

Delayed  s-shaped Model 
(Huang & Kuo (1997)) 

237.196 0.0963446 245.246 

 

Figure 4.1. Observed/estimated Current Testing-Effort Function VS. Time
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Figure 4.2. Observed/estimated Cumulative Test-Effort Function VS. Time
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Figure 4.3. Observed/Estimated Cumulative Number of Failures VS. Time
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Figure 4.4. Graph of Estimated Intensity Function. 

N. Ahmed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (1) , 2011, 555-562

560



 

4.7. Conclusion 
In this chapter, test effort function representing the time 
dependent behavior of test effort spent during software 
testing phase have been described by Burr Type-III curve. 
Due to incorporating the Burr Type – III testing effort 
function the proposed software reliability growth model fits 
the real software data set fairly well and in could give us 
reasonable description of resource consumption behavior. 
Comparison study shows that Burr Type – III model gives 
minimum error percentage rather than, G-O, Exponential 
Rayleigh and Delayed S-shaped model. From figure we 
also conclude that our model fit the better as compare to 
other models. 
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